Enantiospecific Adsorption of Amino Acids on Naturally Chiral Cu{3,1,17}R&S Surfaces.

نویسندگان

  • Yongju Yun
  • Andrew J Gellman
چکیده

Gas-phase equilibrium adsorption of D- and L-serine (Ser) mixtures and D- and L-phenylalanine (Phe) mixtures has been studied on the naturally chiral Cu{3,1,17}(R&S) surfaces. (13)C labeling of the l enantiomers (*L-Ser and *L-Phe) has enabled mass spectrometric enantiodiscrimination of the species desorbing from the surface following equilibrium adsorption. On the Cu{3,1,17}(R&S) surfaces, both equilibrium adsorption and the thermal decomposition kinetics of the D and *L enantiomers exhibit diastereomerism. Following exposure of the surfaces to D/*L mixtures, the relative equilibrium coverages of the two enantiomers are equal to their relative partial pressures in the gas phase, θ(D)/θ(*L) = P(D)/P(*L). This implies that adsorption is not measurably enantiospecific. The decomposition kinetics of Ser are enantiospecific whereas those of Phe are not. Comparison of these results with those for aspartic acid, alanine, and lysine suggests that enantiospecific adsorption on the naturally chiral Cu surfaces occurs for those amino acids that have side chains with functional groups that allow strong interactions with the surface. There is no apparent correlation between amino acids that exhibit enantiospecific adsorption and those that exhibit enantiospecific decomposition kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)(R&S) surfaces.

Homochirality of amino acids, sugars, proteins, and DNA is one of the biochemical hallmarks of life on Earth. Its origins have been debated for decades. Given that minerals such as quartz were probably the first enantiomerically pure materials on Earth, it has been suggested that such materials served as chiral substrates for enantiospecific surface chemistry. Enantiospecific adsorption on the ...

متن کامل

Equilibrium Adsorption of D- and L‐Alanine Mixtures on Naturally Chiral Cu{3,1,17} Surfaces

Equilibrium adsorption of gas phase mixtures of Dand Lalanine (Ala) onto the naturally chiral Cu{3,1,17} surfaces has been studied by both experiment and DFT-based modeling. Isotopically labeled *L-Ala (HO2 CCH(NH2)CH3) and unlabeled D-Ala allow mass spectrometric enantiodifferentiation of the adsorbed species during temperature-programmed decomposition, following equilibrium adsorption. Measur...

متن کامل

Enantiospecific Adsorption of (R)-3-Methylcyclohexanone on Naturally Chiral Surfaces Vicinal to Cu(110)

R)-3-methylcyclohexanone (R-3MCHO) has been shown to adsorb enantiospecifically on naturally chiral Cu surfaces vicinal to the Cu(110) plane. Adsorption of R-3MCHO on seven Cu single crystal surfaces vicinal to (110) was studied using temperature programmed desorption. These surfaces include Cu(110), Cu(771), Cu(430), Cu(13,9,1) and Cu(651). The Cu(13,9,1) and Cu(651) surfaces are naturally chi...

متن کامل

Enantiospecific Adsorption of (R)-3-Methylcyclohexanone on Naturally Chiral Cu(531) Surfaces

The enantiospecific adsorption and desorption of (R)-3-methylcyclohexanone on naturally chiral Cu(531) surfaces was studied using temperature programmed desorption. The Cu(531) surfaces are of interest because they lie at the center of the stereographic triangle and thus, have the highest density of chiral adsorption sites possible on the surface of a face centered cubic metal. Several (R)-3-me...

متن کامل

Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.

The enantiospecific desorption kinetics of R- and S-propylene oxide (PO) from a Cu(100) surface modified by enantiomerically pure D- or L-lysine have been studied using temperature programmed desorption. These experiments have used R- or S-PO as the chiral probe for study of enantiospecific adsorption on Cu(100) surfaces modified with D- or L-lysine. This chiral probe/modifier/Cu system manifes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 31 22  شماره 

صفحات  -

تاریخ انتشار 2015